3 条题解
-
0
开O2优化可以用dfsAC
#include <bits/stdc++.h> using namespace std; typedef long long LL; const int N = 21; int n; int d[N][N]; bool st[N]; LL ans = 0x3f3f3f3f; void dfs(int u, int cnt, LL cost)// 当前所在岛屿, 总共经过了多少个岛屿, 经过cnt个岛屿的花费 { if(cost > ans) return; if (cnt == n && u == n) { ans = min(ans, cost); return; } for (int i = 1; i <= n; i++) { if (i == u) continue; if (st[i]) continue; if (d[u][i] >= ans) continue; st[i] = true; dfs(i, cnt + 1, cost + d[u][i]); st[i] = false; } } void solve() { cin >> n; for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) cin >> d[i][j]; st[1] = true; dfs(1, 1, 0); } int main() { solve(); cout << ans << endl; return 0; }
-
0
#include<bits/stdc++.h> using namespace std; int n;int mp[20][20]; bool vis[20]; using ll=long long; ll ans=1e9+5; void dfs(int x,ll ann){//x是到了哪座岛出发,ann是花费 if(x==n){ for(int i=1;i<n;i++){ if(!vis[i])return; } ans=min(ans,ann); return; } if(ann>ans){ return; } for(int j=1;j<=n;j++){ if(x==j) continue; if(vis[j]) continue; vis[j]=true; dfs(j,ann+mp[x][j]); vis[j]=false; } } int main(){ cin>>n; for(int i=1;i<=n;i++){ for(int j=1;j<=n;j++){ cin>>mp[i][j]; } } vis[1]=true; dfs(1,0); cout<<ans<<endl; return 0; }
-
0
使用dfs + 剪枝,最多可过70%数据
#include <bits/stdc++.h> using namespace std; const int N = 20; const int INF = 1e9; int mp[N][N]; int vis[N]; int n; int mn = INF; int mem[N][N][N]; int dfs(int x, int sum, int cnt) { if (cnt == n && x == n) { mn = min(mn, sum); return mn; } if (cnt == n || sum >= mn) { return INF; } for (int i = 1; i <= n; ++i) { if (!vis[i]) { vis[i] = 1; return dfs(i, sum + mp[x][i], cnt + 1); vis[i] = 0; } } } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { scanf("%d", &mp[i][j]); } } vis[1] = 1; printf("%d\n", dfs(1,0,1)); return 0; }
正解DP
#include <bits/stdc++.h> using namespace std; const int N = 20; const int INF = 1e9; int mp[N][N]; int dp[1 << N][N]; int n; int main() { scanf("%d", &n); for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { scanf("%d", &mp[i][j]); } } for (int i = 0; i < (1 << n); ++i) { for (int j = 0; j < n; ++j) { dp[i][j] = INF; } } dp[1][0] = 0; for (int i = 1; i < (1 << n); ++i) { for (int j = 0; j < n; ++j) { if ((i >> j) & 1) { for (int k = 0; k < n; ++k) { if ((i >> k) & 1 && j != k) { dp[i][j] = min(dp[i][j], dp[i ^ (1 << j)][k] + mp[k][j]); } } } } } printf("%d\n", dp[(1 << n) - 1][n - 1]); return 0; }
- 1
信息
- ID
- 80
- 时间
- 1000ms
- 内存
- 256MiB
- 难度
- 7
- 标签
- 递交数
- 124
- 已通过
- 24
- 上传者